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Abstrad. We comment on some recent investigations on the electronic properties of models 
associated with the "hueMorse chain, point out that their conclusions contradict rigorously 
pmven theorems, and indicate some of the sowes of these misinterpretations. We briefly 
review aod explain the current status of mathematical results in this field and discuss some 
conjectures and opn problem. 

1. Introduction 

Following the discovery of quasicrystals by Shechtman etal [l,  21 there has been continuing 
interest by both physicists and mathematicians in structures that exhibit what has been 
termed deterministic disorder. A class of models that has attracted particular attention in 
this context are one-dimensional Schrdinger operators with potentials obtained from so- 
called substitution sequences 13,41 and a number of analytical and numerical tools have been 
developed for their investigation. On the other hand, substitution sequence provide examples 
of various types of aperiodic slructures, e.g. quasiperiodic or not, that can be characterized 
by the nature of their Fourier spectrum which may be dense pure point (Fibonacci sequence), 
singular continuous (Thue-Morse sequence), or even absolutely continuous (Rudin-Shapiro 
sequence). It is naturally of great interest to investigate the spectral and transport properties 
of systems that depend on such properties. Let us mention that models based on substitution 
sequences have since also enjoyed increasing popularity in different contexts such as one- 
dimensional quantum king chains I.5,6], aperiodically kicked quantum systems 171, etc. 

About a decade has passed since the pioneering papers by Kohmoto etal 181 and Ostlund 
et al [9] appeared. and a vast amount of knowledge has since been accumulated through the 
work of both physicists and mathematicians and through methods ranging from numerical 
simulations, judicious guessing to heuristic and rigorous mathematics [10-27]. In spite of 
these efforts, we are today still far from a complete and coherent understanding of the 
properties of  these systems which are, by and large, both subtle and unusual. This situation, 
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together with the prospective technological applications (e.g. superlattices corresponding 
to substitution sequences can today be manufactured [28,29]), invites a continued and 
coordinated effofi to further research in this area. 

A regrettable feature of the current situation is that, in spite of a flourishing literature 
and the existence of a number of review papers [2,30,31], the communication between 
different schools has been less than perfect and, in particular, it appears that what has been 
obtained in terms of mathematically rigorous results has not generally been recognized. As 
a result, still very recently a number of papers have appeared in renowned journals (see in 
particular 132-351) in which, on the basis of numerical and heuristic methods, results are 
claimed that completely contradict rigorously proven facts. 

The present paper is an attempt to improve this situation by explaining some of 
the mathematical results concerning the spectral theory of Schrodinger operators with 
substitution potentials and to rectify the errors in several recent papers that came to our 
attention. More importantly, we will try to explain the sources of the misinterpretations in 
these papers. Also, we would like to indicate, in an informal way that should be accessible to 
non-mathematicians, what mechanisms are important in leading to the mathematical results, 
what further results may be expected and what information would be needed to obtain these. 
We will also try to point to the serious open problems in the field. To a lesser extent, this 
paper may also serve as a survey for the less involved reader. 

Let us briefly review the types of models we consider. First we recall the definition of 
a substitution sequence. Take a finite set A, called an a[phabet and denote by A' the set 
of all finitely long words that can be written in this alphabet. Moreover, we write AN and 
dz for the sets of all semi-infinite and infinite sequences of letters from A, respectively. 
Now let ( be a map from A to A*, i.e. a rule that is associated with any letter in A a finite 
word. We call a substitution rule and extend it to a map from A' to A' by specifying 
that ( acts on a word by substituting each letter ai of this word by its corresponding image 
((ai). By the same rule the action of e is extended to AN and dz. A sequence U E AN 
is then called a substitution sequence, if it is a fixpoint of 6. i.e. if it remains invariant if 
each letter in the sequence is replaced by its image under e. Some simple conditions on 
6 assure the existence of such fixpoints. By choosing a e-left fixpoint U ,  = . . . a1 such 
that the word ala, is contained in up, we define by concatenation a doubly infinite word 
w = U&. Moreover, except for trivial examples of substitution rules, these fixpoints are 
aperiodic sequences. Examples of substitution sequences that have attracted most attention 
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in physics are as follows: 

(i) The Fibonacci sequence. Here A = (a ,  6 )  and the substitution rule is simply 

a + 6(a)  = a b  b -+ c(b) = a .  

(ii) The Thue-Morse sequence. Again A = (a, b) ,  but the rule is this time 

a -+ e(a)  = ab b -+ ( (b )  = ba. 

(iii)The period-doubling sequence. Again A = (a ,  b) ,  and the rule is 

a -+ ( ( U )  = a b  b -+ ((b) = aa. 

(iv)The Rudin-Shapiro sequence. Here A = {a ,  b, c, d } ,  and the rule is 

a - + ( ( a ) = a c  b -+ ((b) = d c  c +  t ( c )  = a b  d - + ( ( d )  = d b .  
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All of these examples, and in fact all substitutions we will consider, have the property 
of being 'primitive' [4], which means that there exists an integer k such that for all pairs of 
letters a, ,3 in A the word <'(a) contains the letter p. Here ex means the k-fold application 
of 5. In what follows the term substitution will always be understood to mean 'primitive 
substitution'. 

Given a substitution sequence, one may consider various associated Schdinger 
operators. The one most studied is doubtlessly the tight-binding model, where the 
Hamiltonian acts on wavefunctions @ in the Hilbert space e*@) of square integrable 
sequences as 

H b ? w  = * ( f l +  1) + ?4(n - 1) + U"*@). (1.5) 

Here the potential un is obtained by assigning real value U@) to each letter 01 in  A and 
setting U, = u(w~) .  We will assume that the map U is not constant, but it is not required 
that it is oneto-one. The only requirement on U is that the resulting sequence of potential 
values must be aperiodic. This means in particular that the general results discussed below 
also apply to sequences that are obtained as projections of substitution sequences. This 
answers a question raised in a recent paper by Hornquist and Johansson [27]. 

Another example are models of the Kronig-Penney type which have for instance been 
proposed to describe transport in structured superlattices [3545]. Here the operator is 
defined on continuum wavefunctions in L2(R) and is given by 

d2 
HKp = -- + V ( x )  

dx2 (1.6) 

where V ( x )  is a step function describing a sequence of potential barriers of Id1 types that 
are again arranged consecutively according to the chosen underlying substitution sequence. 

As always in the theory of differential operators one is interested in the spectrum of 
the operators H. Let us recall that the spectrum, u(H), of a self-adjoint operator H is 
defined as the complement of the set of values E for which the resolvent, (H - E ) - ' ,  is 
a bounded operator. An important criterion that characterizes the spectrum in the case of 
Schradinger operators is that u(H) coincides with the closure of the set of values E for 
which the timeindependent Schrdinger equation 

possesses a solution that is polynomially bounded, i.e. for which there exist constants a 
and b such that [@,&)I < blny,  for all n E Z. The values for which J.&) is a square 
integrable function are called the eigenvalues of H, and the closure of the set of eigenvalues 
is called the point spectrum; the remaining spechum is the continuous spectrum which can 
be further decomposed into the absolutely continuous (AC) and singular continuous parts, in 
accordance with the Lebesgue decomposition of the spectral measure. Roughly speaking, 
the absolutely continuous spectrum is a closed set with non-empty interior, while the singular 
continuous part ('what remains' of the spectrum after the point and the AC parts have been 
removed) is a Cantor set. Note, however, that while the AC spectrum is always a set of 
positive Lebesgue measure, it is in general neither true that the singular continuous measure 
is supported on a set of measure zero nor that its support is a Cantor set. On the other hand, 
the spectrum may be a Cantor set (of zero or non-zero measure) without having a singular 
continuous component, but such a set may well carry only a point spechum. The spectral 
type has important consequences for the transport properties of the models; if the Fermi 
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energy falls in the AC part of the spectrum one expects a conductor, while if it falls into the 
point spechum (or in the complement of the spectrum) one expects to have an insulator. 
The singular continuous spectrum has generally been considered to be somewhat exotic and 
is much less well understood; however, for the very models we are dealing with here it is 
quite common, and is expected to give rise to interesting new transport phenomena. 

Basically, since the early papers of Kohmoto er a1 it had been conjectured that, at least 
in the case of the Fibonacci sequence, the operator &, should have a singular continuous 
spectrum. This was later proved in two remarkable papers by SUtB [I21 and (for more 
general Fibonacci sequences) Bellissard et ol [ 131. It is a natural question to ask whether 
this property depends on particular features of the Fibonacci sequence, e.g. on the fact 
that it is quasi-periodic, and one may pose the question whether and how the spectral type 
of the Hamiltonian reflects certain features of the sequence, and in particular the nature 
of the Fourier spectrum of the sequence, or if it could be an indicator for the degree of 
‘randomness’ of the substitution sequence. The most prominent example of a substitution 
sequence that is not quasi-periodic is certainly the Thue-Morse sequence and this has led 
to a rather extensive investigation of this example. The question of the spectral type in 
this case has been discussed in a number of papers [14-18,32-35,44] both for the tight- 
binding model and the Kronig-Penney model. In their most recent papers, Ryu et ai [35] 
amive at the conclusion that in both cases the spectrum contains an absolutely continuous 
component. On this basis they argue that the Thue-Morse sequence should be regarded as 
more ‘periodic’ than the Fibonacci sequence. Unfortunately, their claim is false. In fact, 
in [IS] (see also [17] for a slightly incomplete argument) it has been proved rigorously 
that the spectrum of the Thue-Morse model is purely singular continuous (this paper deals 
mainly with another sequence, the period-doubling sequence, but the result applies also to 
the “hue-Morse case (see the remark following theorem 3 in [18]). In fact, a much more 
general result on the absence of an absolutely continuous spechum has been obtained in 
[22] which suggests that the spectral type is quite independent on the particular properties 
of the substitution sequence. In the next sections we explain those results in more detail 
and comment in more detail on how the erroneous claims in [35] have been obtained. 
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2. Sequences and spectra 

It is a natural question to ask what properties of a given sequence determine the spectral 
type of the corresponding Schriidinger operator. Classical candidates might appear to be 

(i) the entropy of a sequence, defined as (see, e.g., [4]) 

1 
ktm k I = lim - In # {different words of length k occurring in the sequence] 

(ii) the Fourier spectrum of the sequence. 

However, the entropy of a sequence is clearly too crude a measure; all substitution 
sequences have zero entropy and are thus not distinguishable from periodic ones. 
Nonetheless, their spectra are quite different. It is an interesting, and as yet not much 
investigated question, as to whether more refined quantities related to the number of different 
words in a sequence are related to spectral properties. 

The Fourier spectrum (see, e.g., [46,47]), on the other hand, varies widely in nature 
between substitution sequences, ranging all the way from pure point (Fibonacci) through 
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singular continuous (Thue-Morse) to absolutely continuous (RudinShapiro). One might 
naturally think that this should be reflected in the spectra of the corresponding operators: 
pure point Fourier should give rise to a singular continuous spectrum of the Schrodinger 
operator and absolutely continuous Fourier ought to correspond to a point spectrum. with 
the intermediate singular continuous Fourier somewhere in between. However, there is 
little evidence to support such conjectures. An attempt to provide a theoretical basis 
to relate properties of the Fourier spectrum of a sequence to specaal properties of the 
Schriidinger operators was made by Luck [ 191 on the basis of perturbation theory. Although 
his arguments are mathematically heuristic. he succeeded in predicting the scaling of the 
spectral gaps, at least in cases where the Fourier spectrum is pure point. In other cases, 
such as Thue-Morse and Rudin-Shapiro, there were no conclusive predictions. This method 
does demonstrate, however, that a relation between Fourier spectrum and the spectrum of 
the operator is basically limited to first-order perturbation theory, and higher-order effects 
will become relevant if the singularities in the Fourier spectrum are not strong enough. 

A more pragmatic point of view would favour the idea that the crucial features of a 
substitution sequence should reside in its self-similarity which is encoded in its substitution 
rule. From that point of view, it would seem more natural to conjecture that the spectral 
type for all substitution sequences (excepting maybe some pathological cases) should be the 
same, namely a singular continuous spectrum. There are a number of sound mathematical 
results that are indicative of this, with a number of open problems left to close the argument. 
The remainder of this section is devoted to their explanation. 

In all the one-dimensional models of the type we consider here, i.e. the tight-binding 
or the Kronig-Penney models, the basic tool of spectral analysis is the hansfer matrix 
formalism. Without giving details that have been presented many times elsewhere (for the 
Kronig-Penney model see, e.g., [35,43]) we just note that in all these cases this leads to 
the investigation of a product of two-by-two matrices of the form 

where uk is the kth letter in the substitution sequence U and T, : A + SL(2, @) is a map 
that assigns, for fixed energy E ,  to each letter in the alphabet a unimodular two-by-two 
matrix. The precise form of this map depends, of course, on the specific model and its 
parameters (such as potential strength, etc). As we shall see, however, this precise form of 
TE is irrelevant for many qualitative properties of the model such as the spectral type of 
H. Let us also recall that the Lyupunov exponent is defined as 

The self-similarity properties of substitution sequences can be used to derive a very efficient 
method for obtaining crucial information on the asymptotic properties of Pn(E).  Let for 
any word o E A' 

Moreover, fork E W, set 

(2.4) 
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with Tio) = TE. Obviously, the quantities Tz’(0r) can then be computed recursively. It has 
tumed out even more useful to derive from these recursions a system of recursive equations 
for the traces of these transfer matrices, called the trace map. The existence of a trace map 
has been established first in the case of the Fibonacci sequence by Kohmoto et al [lo], 
for general substitutions on two-letter alphabets by Allouche and Peyrihe [48] and in all 
generality by Kolar and Non [491. More recently, there has been considerable effort by 
several groups to find the simplest form of the trace map [5C-52], but this is not really 
relevant to the question we are concerned with. We will not enter into the derivation of 
the trace map (for an exposition see, e.g., 22 ut on1 state that in general there exists a 
finite subset B c A‘ such that if we set xk’(o)  5 tr TE (o), then there exist for all 0 E B 
polynomial maps Fg : ClEl + C, such that 
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(2) 

X , f + ” v )  = F J ( x ! ’ ( h ) ,  . , ., X t ) o ( B I E I ) )  (2.5) 

In the specific examples that we consider mostly here, the trace map takes the following 
forms: 

(i) period-doubling sequence) B =A, and 

(ii) (Thue-Morse sequence) Here it is useful to use slightly more complicated variables. 
We set xf) = t rTf) (a)  and uE ( k )  - - 1 2tr(Tik)(u) - Tik’(b))’ and finally w f )  = 

u t )  + 4 - (~8)’. Then [16] 

These trace maps are universally used tools to investigate such models. They depend 
only on the substitution sequence and not on the specific choice of the model or its 
parameters which enter only through the initial conditions in a straightforward manner. 

To use the trace map in the spectral analysis we need to relate the spectrum to quantities 
related to the dynamical system given by the trace map. This quantity will be, naturally, the 
stable set of the dynamical system: we should expect that a particular value of the energy, 
E ,  is in the spectrum of the Hamiltonian, if and only if the corresponding vector of initial 
traces x:) remains bounded under subsequent applications of the trace map. 

However, t h i s  point turns out to be quite subtle and also represents, in fact, the main 
difficult part in the determination of the spectral type. First of all, it is quite easy to give a 
precise definition of a stable set which guarantees that it will contain the spectrum. Namely, 
we say that its complement, called the unstable set, is the set of initial traces x t )  with the 
property that there exists an no such that for all n no. the images under n applications of 
the trace map have first component x$’(ao) whose absolute value is larger than two (for 
a precise formal definition see, e.g., [22]). The point is that under this condition, we can 
construct a sequence of periodic approximants of H, converging strongly to H, for which 
we know by Floquet theory that E is in the interior of a spectral gap, and this implies that 
the same holds for the limiting operator. Note that this definition does not imply that in the 
stable set the traces remain bounded; it suffices that there exists an infinite number of values 
n for which the first trace gets smaller than two! The period-doubling sequence furnishes 
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an example in which such behaviour actually occurs, i.e. for some certain values of the 
energy the traces undergo fluctuations with ever growing amplitudes, although, and this is 
a general characteristic feature, the growth is slower than exponential (see [22]). This can 
easily be deduced from the results presented in [18]. 

So what about the converse statement? Intuitively, one is tempted to believe that if the 
trace of the transfer matrix has modulus less than two, this should imply that all solutions 
of both the homogeneous Schrodinger equation (1.7) and the inhomogeneous equation for 
the Green function 

(H - E)G =a, 

where 80 denotes the delta-function concentrated at zero, cannot tend to zero at infinity and 
in particular are not squaresummable (recall that the transfer matrices have determinant 
one: thus if their trace is less than or equal to two, both their eigenvalues have modulus 
one!) which implies first that E is not an eigenvalue and second that E is in the spectrum 
of H. However, a moment’s reflection will show that this argument is premature and 
more work is needed to justify it (the point being that no information is given about the 
eigenvectors of the transfer mahices, the angle between which could tend to zero in which 
case a decaying solution cannot be excluded). Still, this arguuient has been made rigorous in 
some examples, namely the Fibonacci sequences, the Thue-Morse sequence and the period- 
doubling sequence. However, already in the period-doubling case, this required a fairly 
cumbersome analysis that appeared to be impossible to cany through in more complicated 
situations. 

A less direct but technically more feasible approach is based on the following 
observation: from quite general argument, it is known that the spectrum of a Schrodinger 
operator mnst always contain the set of energies for which the Lyapunov exponent is zero 
(the converse being false in general; for random sequences, the Lyapunov is strictly positive 
even in the spectrum). Thus, if one can show that the Lyapunov exponent is zero for all 
energies in the stable set, one can close the circle of inclusions and show that all three sets 
are identical! This idea was shown to work in [22] for a very large class of substitution 
sequences, namely those giving rise to so-called ‘semi-primitive’ trace maps (for a definition 
see [22]). This class has been shown recently in [27] to contain a great number of sequences 
derived from circle maps with rotation numbers obtained from precious means. 

Apart from its generality, an advantage of this method is that as a by-product it yields 
immediately the singular nature of the spectrum. By a result of Kotani [531 (augmented by 
some simple soft analysis that can be found in [NI) it is known that, for any substitution 
sequence (except the trivial case of periodic sequences), the set of energies on which the 
Lyapunov exponent vanishes must be of zero Lebesgue measure. Thus, the presence of an 
absolutely continuous spectrum is immediately excluded in all these cases! We would like to 
stress that all these argument apply in the Kronig-Penney models just as in the tight-binding 
models, even though the theorems in the original literature were stated only for the latter 
case. The problem left open by this method is that of the possible existence of eigenvalues. 
They are excluded under assumptions which allow us to show that the first method works, 
but which are certainly too restrictive. It is quite likely that in fact the spechvm will be 
singular continuous (i.e. of measure zero and no eigenvalues) whenever it coincides with the 
stable set of the trace map, but some new idea is needed to prove this. The other main open 
problem is of course to know whether the assumption of a semi-primitive trace map is really 
necessary for the absence of an absolutely continuous specmm. There is one example, the 
Rndin-Shapiro sequence, for which the trace map is not semi-primitive, but unfortunately 
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there are also no very definite results on the nature of the spectrum in this case. Dulea et 
nl [54] have presented some evidence based on a scaling analysis and numerical data that 
for strong potentials the spectrum should be pure point. This would be very interesting, if 
it can be confirmed. But of course, all such results should be regarded with great caution. 
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3. Extended states and spectra 

We have seen in section 2 that the question of the nature of the spectra in our models is 
settled rigorously for a large class of substirution sequences and in particular, with great 
detail, in the case of the Thue-Morse sequence. It is still interesting to analyse why and 
how the authors of 1351 arrived at the false conclusion that in this example there exists an 
absolutely continuous component in the spectrum. 

The main basis of their analysis resides in the distinction of (generalized) eigenstates as 
'extended' or 'critical'. Now, in the Thue-Morse case (and in fact in all examples where 
singular continuity of the spectrum was proved) it turns out that for all values of the energy 
in the spectrum the solutions of the initial value problem (H - E)* = 0 do not tend to 
zero at infinity. Thus, reasonably, all states might be called 'extended'. Still, there are quite 
different ways in which a function that does not tend to zero may behave. A particularly 
nice one would be to be periodic, or, at least, to be a possibly aperiodic repetition of 
several patterns of constant length. This latter case occurs quite typically for substitution 
potentials and it is apparently this behaviour that is referred to as 'extended states'. While 
this has nothing whatsoever to do with the presence or absence of an absolutely continuous 
spectrum, this is an interesting phenomenon and deserves some comments. 

Let us for simplicity consider the case of a two-letter alphabet, say A = (a, b]. Now 
it may happen that for given integer k and for special values of the energy E the matrices 
@(U) and Tf)(b) commute. Then the two matrices will posses at least one common 
eigenvector, and this will give rise to a solution of the Schrodinger equation whose behaviour 
over steps of length [ck(a)l, resp. Ic'(b)l, we can easily trace. If one of the traces of the 
two matrices is larger than 2, there are in fact two such solutions which will grow either 
to the left or to the right exponentially fast, so we are out of the spectrum. The interesting 
case arises when the two traces have modulus less than or equal to 2: in this case they just 
multiply the eigenvector by a phase and we obtain an extended solution whose behaviour 
is particularly simple. Up to the phase factor, it consists of two patterns of length Ie'(n)l 
and Icx(b)l which alternate according to the way the letters U and b are arranged in the 
substitution sequence itself. 

In general it may be expected that the number of values E for which this phenomenon 
occurs should increase with k: the entries of the corresponding matrices are polynomials of 
ever higher degree in E. Of course, the details here depend on the particular model via the 
dependence of the basic transfer matrices on the energy. In the Thue-Morse case and in the 
period-doubling case, it has previously been noticed that for each k there exist 2'-' values 
of E for which such solutions exist (see [18,17] and [18], respectively). Their occurrence in 
both sequences shows in particular that they are not tied to the question of quasiperiodicity 
of the sequence, as appears to be believed in [351. It should be noted that the case of the 
Fibonacci sequence is quite peculiar, as there the matrices Tik)@) and Tik)@) can only 
commute if TAo)@) and Tjo)(b) commute (this is readily proved by induction; the crucial 
point is that A commutes with AB if and only if A commutes with B )  which, at least in 
the tight-binding model, is only true in the trivial case where U 0. 
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In any case, it should be kept in mind that the energies at which such solutions 
exist always form at most a countable set. The continuous spectrum, however, is by its 
definition uncountable. Therefore, they can never be significant for the absolutely continuous 
spectrum, and statements like ‘one half of the states are extended‘ are quite meaningless. 

We should stress, however, that the properties of generalized eigenfunctions will be 
quite important for other physical (in particular transport) properties of these systems (see, 
e.g., [55,56]) even though this entire field is not yet sufficiently investigated. We would 
like to mention in this context that the types of extended states we have discussed above 
also occur in certain cases of random potentials with constraints. An example that was 
discussed extensively in recent years is the ‘random dimer model’ (see [57,58]) introduced 
to describe certain anomalous conductivity properties of some polymers. 

4. Conclusions 

We have explained in the preceeding sections that for a large class of models based on 
substitution sequences the spectrum has no absolutely continuous component and moreover 
is concentrated on a set of zero Lebesgue measure. Moreover, the spectrum coincides in 
all these cases with the set of energies for which the Lyapunov exponent is equal to zero. 
Moreover, for some of the most widely studied examples, namely the Fibonacci sequences, 
the Thue-Morse sequence and the period-doubling sequence, it has been shown that no 
eigenvalues can exist and therefore the spectrum is purely singular continuous in these 
cases. There appears to be no connection between this fact and the nature of the Fourier 
spectrum of the sequences. 

However, there are a number of important problems that remain open. First, we would 
like to see whether the absence of an absolutely continuous spectrum can be proved for all 
aperiodic substitution sequences. We expect this to be true. Second, it would be interesting 
to see whether there are examples of substitution sequences which give rise to a point 
spectrum. A candidate here is the Rudin-Shapiro sequence, and it will be well worthwhile 
to study it more thoroughly. 

Further questions regard the more detailed structure of the specwa, beyond just the 
spectral type. Only in the Thue-Morse and the period-doubling cases is a very detailed 
description of the spectrum available (e.g. precise asymptotics for the behaviour of all 
spectral gaps). It is a quite perplexing feature that even in the simplest case of all, the golden 
Fibonacci sequence, the opening of the gaps at small potentials is not known! In this context 
it would be very interesting to give a more rigorous foundation to the perturbation theoretic 
arguments of Luck [19]. Also one would like to see more precise relations between the 
characteristics of the spectra (e.g. fractal and correlation dimensions of the spectral measure) 
and actual transport properties. At least from a mathematical point of view, little more than 
some vague ideas exist so far, and we do not want to discuss this point here. 

Finally, all results so far are obtained for models that are associated with products of 
two-by-two matrices (excepting the gap-labelling theorems [20,21] which are valid for much 
larger classes of systems). Thus models with long-range hopping models on a strip are not 
covered by existing theorems. The reason for this is basically that there is no analogue of 
the trace map known in these cases. This leaves much room for further investigations. 
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